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ABSTRACT
Hippocampus segmentation in MR images is beneficial for the diagnosis of many diseases and pathol-
ogies such as Alzheimer’s disease. Manual segmentation of the hippocampus is highly time-consuming
and has low reproducibility; however, automated methods have introduced substantial gains in this
regard. In this study, we used a novel level-set method for hippocampus segmentation in combination
with the SBGFRLS (Selective Binary and Gaussian Filtering Regularised Level Set) and LAC (Localising
Region-Based Active Contours) algorithms. The proposed method avoided the algorithms which required
a large database and instead used a more complex level set approach to obtain comparable accuracy.
This method was applied to a set of 36 MRI scans provided by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), using the Harmonised Hippocampal Protocol (HarP) as the gold standard. In addition,
the results were compared with the outputs of the Freesurfer software package. In regards to the
similarity indices, the results of our algorithm (mean Dice = 0.847) were more comparable with the
gold standard compared to those of Freesurfer. Classification results for AD vs control and MCI vs control
showed a high degree of accuracy (91% and 75%, respectively). Therefore, this method can be an option
for accurate and robust segmentation of the hippocampus.
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1. Introduction

The morphological analysis of brain structures in medical
images, such as in Magnetic Resonance Imaging (MRI), non-
invasively provides information about the shape and volume of
the brain structures. This has many applications in disease
diagnosis, therapy procedures and surgical planning. One of
the most important subcortical brain structures is the hippo-
campus. It is involved in many functions such as memory,
spatial navigation, learning, regulation of hypothalamic func-
tions and emotional behaviour. The abnormality of this struc-
ture is thought to be associated with neurodegenerative
diseases and brain disorders such as Alzheimer’s disease, mild
cognitive impairment, traumatic brain injury, schizophrenia,
epilepsy and major depression (Geuze et al. 2005). In cases of
schizophrenia, Alzheimer’s disease, epilepsy and among other
conditions the shape of hippocampus is altered and could be
used as one of the indicators (Csernansky et al. 1998; van
leemput et al. 2009). In addition, it is one of the few brain
regions in which neurogenesis occurs (Anand and Dhikav
2012). As a result, clear segmentation of this structure in MRI
is valuable.

The current gold standard for hippocampus segmenta-
tion in MRI is manual delineation of the structure’s borders
in each slice by a specialist. This procedure is time-
consuming and it is subject to low reproducibility, as the
final result is dependent on the inputs provided by the user
which leads to high inter-rater (performed by different

users) and intra-rater (performed by the same user in differ-
ent moments) variability. To overcome these issues, auto-
mated and semi-automated methods have been proposed
for hippocampus segmentation. These methods also face
challenges such as low contrast of the MRI and existence
of neighbouring structures with similar intensity, small size
and complex shape of hippocampus, and its fuzzy and
discontinuous boundaries.

In the early 1990s, semi-automated methods which required
user interaction were introduced. This interaction was a major
drawback of those algorithms as it caused low reproducibility,
and was also time-consuming. For instance, some markers on
the border of hippocampus defined by the user were used in
registration step (Haller et al. 1997; Shen et al. 2002). Later,
these semi-automated methods were able to reach higher
reproducibility by limiting the level of the user interaction, for
example, by only determining one central seed-point (Chupin
et al. 2007). Fully automatedmethods began being proposed in
the early 2000s in order to overcome these limitations, and they
fall into three categories.

(I) Atlas-based methods are the first category. These can
be single-atlas, multi-atlas or probabilistic-atlas techni-
ques. The accuracy of the single-atlas technique was
limited to the quality of the atlas as well as the registra-
tion process. One recent study tried to optimise the
registration process by using a graph cut algorithm
(Boykov et al. 2001), which increased the accuracy of
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segmentation (Kwak et al. 2013). One of the first multi-
atlas implementations was proposed by (Heckemann
et al. 2006). In the multi-atlas approach, the target
image was registered to multiple atlases, and using
the label fusion technique (Robitaille and Duchesne
2012), the final segmentation was provided (Platero
and Tobar 2017). In (Khan et al. 2011) which is a multi-
atlas method, dynamic information and supervised clas-
sifier were combined and were used for atlas selection.
Using local similarity metrics (Akhondi-asl et al. 2011;
Cardoso et al. 2013) in hippocampus to select the opti-
mum atlases, can improve final results. To produce
more accurate segmentation especially in the case of
pathology (Heckemann et al. 2010) proposed incorpor-
ating tissue classification algorithm into the registration
procedure. In (Collins and Pruessner 2010), three atlas-
based methods were evaluated including ANIMAL
(Automatic Nonlinear Image Matching and Anatomical
Labelling) which is a single atlas method using non-
linear registration, described in (Collins and Evans
1997). An optimised pipeline for multi-atlas segmenta-
tion which considered both accuracy and computa-
tional time was introduced in (Lötjönen et al. 2010)
and a novel approach to reduce the number of atlases
used was proposed in (Pipitone et al. 2014). According
to (Dill et al. 2015), for segmenting the hippocampal
subfields the major approaches are multi-atlas techni-
ques (Yushkevich et al. 2010; Pipitone et al. 2014). As it
was mentioned previously, final segmentation in multi-
atlas methods is created through label fusion techni-
ques. For instance, a new label fusion method was
proposed by (Hao et al. 2014) applying statistical learn-
ing technique. One of the other label fusion techniques
is a patch-based method which was first proposed in
(Coupé et al. 2011), and can be categorised as
a dictionary-learning problem. According to (Zandifar
et al. 2017) which compared some automated hippo-
campus segmentation methods on the same dataset,
the most promising method was patch-based method
with non-linear registration and error correction techni-
que; although it should be taken into account that
a small patch may not be an optimum descriptor for
the whole structure. Another recent work which inte-
grated the random forest regression-based multi-atlas
method and pattern recognition-based label fusion
technique is described here (Zheng and Fan 2018). In
probabilistic-atlas methods, the atlases were registered
into a standard space in order to make the algorithm
capable of computing the probabilities of occurrence of
each label in each voxel through consideration of image
intensities and local and global positions. Next, classifi-
cation framework was applied which utilised these
probabilities to obtain the final segmentation (Tong
et al. 2013; Kim et al. 2013). A combination of probabil-
istic atlas and anatomical landmarks was proposed for
hippocampus segmentation by (Chupin et al. 2009)
which is robust to changes in acquisition parameters.
In general, atlas-based approaches provide robust seg-
mentation results; however, the registration procedure

in these algorithms is computationally expensive, espe-
cially in multi-atlas methods.

(II) The second category is related to machine learning
techniques, especially the Artificial Neural Networks
(ANN), which have excellent performance in segment-
ing brain structures (Dolz et al. 2015). As an example,
the ANN approach was used to segment the hippocam-
pus in T1- and T2-weighted MR images (Hult 2003). In
(Amoroso et al. 2015) a novel hippocampus segmenta-
tion method called Hippocampal Unified Multi-Atlas-
Networks (HUMAN) was proposed which combined
multi-atlas technique with ANN and used optimal
atlases to train their network to obtain final segmenta-
tion. In the past few years, deep learning techniques
and in particular the Convolution Neural Network (CNN)
were also used for this aim (Lecun et al. 1998). One of
the benefits of CNN in comparison with fully connected
networks is that there are fewer parameters to estimate
and therefore the training is easier. A recent study that
used CNN for hippocampus segmentation (Bao and
Chung 2018) proposed a novel architecture by the
name of Multi-scale structured CNN (MS-CNN) to over-
come problems such as complex background and simi-
lar histogram profiles in the MR images. Additionally,
they applied a dynamic random walker approach to
smooth the final borders of the hippocampus. Despite
the high accuracy, some drawbacks of these approaches
are heavy algorithm design, difficulty of understanding
the structure of the algorithm, and increased risk of
over-fitting.

(III) The third category is deformable models, such as the
Active Contour Models (ACM) (Kass et al. 1988), in which
the main idea is to iteratively deform a contour accord-
ing to the statistical information of intensity, image
gradient, or both, and to stop the contour at the borders
of the desired object. These are generally categorised as
region or edge-based deformable models. Level-set, an
energy minimisation framework that enables an algo-
rithm to naturally follow the topological changes
(Sethian 1999), is one of the most important approaches
for deformable models. Geodesic active contour (GAC)
(Caselles et al. 1997) is the most popular edge-based
level-set model, as well as the Chan-Vese (Chan and
Vese 2001) as a region-based model. Recent level-set
methods allow integration of both prior information
and image information in one single optimisation fra-
mework, which is essential for hippocampus segmenta-
tion. An Adaptive Gradient Distribution Boundary map
(AGDB), which controls the weight of contributed image
and prior information in an ACM framework energy
minimisation was previously proposed (Zarpalas et al.
2013). This method was later improved by proposing
OLMs (Optimal Local Maps) for controlling the contribu-
tion of prior, edge and region information by local
weighting in the ACM framework (Zarpalas et al. 2014);
however, due to the training step and extraction of
OLMs as well as its multi-atlas approach, this method
has a high computational load. Others intended to
decrease the computational load by using an alternative
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approach to compute the prior information and locally
integrate it into the conventional GAC model (Achuthan
and Rajeswari 2015).

As a result, in this study, a novel approach for hippo-
campus segmentation is proposed which can be cate-
gorised in the third group mentioned above. We
obtained prior information from an affine registration,
followed by a non-linear registration step. Then, we
locally integrated this information using a binary
weighting map of image gradient information into an
innovative level-set framework which adaptively uses
local and global region information of the target
image. As our method does not need training or multi-
ple registration steps, the computational load is
decreased. The results of the proposed method were
compared with the results of the manual segmentation
of the hippocampus as well as with the segmentation
results of the Freesurfer software package.

2. Materials and methods

2.1. Dataset

We used the MRI data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu) database
(Jack et al. 2008). Thirty-six images, whose ground truth segmen-
tations according to the Harmonised Hippocampal Protocol
(HarP) were available (Apostolova et al. 2015; Boccardi et al.
2015a), were randomly selected including normal control (NC),
mild cognitive impairment (MCI) and Alzheimer’s disease (AD).
A summary of the selected data is provided in Table 1.

2.2. Manual segmentation

With the goal of creating a standard manual segmentation pro-
tocol for hippocampus on MR images, the Harmonised
Hippocampal Protocol (HarP) was introduced (http://www.hippo
campal-protocol.net). A previous study validated the HarP pro-
tocol with the aid of many clinical and educational centres

(Frisoni et al. 2015). The study showed that it has a higher
stability compared to local manual segmentation protocols.
They concluded that HarP could be a reference and unified
protocol for hippocampus segmentation, and as a result, this
protocol was used as the gold standard here. The manual seg-
mentation for our dataset was provided by five qualified HarP
tracers whose absolute interrater interclass correlation coeffi-
cients were 0.95 and 0.97 for left and right hippocampus, respec-
tively (Boccardi et al. 2015b).

2.3. Freesurfer segmentation

Freesurfer (http://surfer.nmr.mgh.harvard.edu/), a well-known and
freely available software for subcortical segmentation and cortical
parcellation, has become an accepted reference in brain structure
segmentation. In summary, the details of subcortical segmenta-
tion algorithm in Freesurfer are as follows: 1) an atlas from
a training set, whose brains are manually labelled and mapped
into MNI305 common space, is used in an automated segmenta-
tion procedure; 2) three types of probabilities are calculated at
each point in the atlas: a) the probability of belonging of each
point to each label, b) the probability distribution function (PDF) of
the measured values (intensity) for each label at each point, and c)
the probability computed with the help of neighbourhood func-
tions with relation to local spatial relationships between labelled
structures calculated by modelling the segmentation as an aniso-
tropic nonstationary Markov random field. Using the first
and second probabilities, an initial segmentation is generated.
Utilising the neighbourhood function in Bayesian framework, the
segmentation is updated iteratively until the labels of the voxels
do not change. The details are fully described elsewhere (Fischl
et al. 2002). Freesurfer segmentation v6.0.0 was applied here as
a comparison to our proposed method.

2.4. Proposed method

The overall flowchart of our method is provided in Figure 1.
First, the target image was corrected for bias, filed, and
simultaneously its CSF (CerebroSpinal Fluid) map was

Table 1. Summary of the selected MRI dataset, including the ADNI subject ID, the MMSE score of the participant, his/her age, and gender, as well as the strength of the
MRI scanner.

Subject ID MMSE Age, Sex MRI Subject ID MMSE Age, Sex MRI

Normal Control
ADNI_011_S_0016 28 65,M SIEMENS 1.5T ADNI_073_S_0089 30 65,M SIEMENS 1.5T
ADNI_020_S_1288 30 59,M SIEMENS 3T ADNI_100_S_1286 30 75,F PHILIPS 1.5T
ADNI_032_S_0479 30 73,F SIEMENS 3T ADNI_018_S_0425 29 85,M PHILIPS 3T
ADNI_127_S_0260 30 78,F GE 3T ADNI_023_S_0031 30 77,F SIEMENS 3T
ADNI_009_S_0842 28 73,M GE 1.5T ADNI_023_S_0061 29 77,F SIEMENS 3T
ADNI_011_S_0021 30 72,F SIEMENS 3T ADNI_037_S_0303 29 84,M SIEMENS 3T

MCI
ADNI_002_S_0729 27 65,F PHILIPS 3T ADNI_003_S_1057 26 61,F SIEMENS 1.5T
ADNI_011_S_0856 27 60,M SIEMENS 1.5T ADNI_011_S_0241 27 81,M SIEMENS 1.5T
ADNI_016_S_1138 27 67,M SIEMENS 3T ADNI_012_S_1292 26 76,M PHILIPS 3T
ADNI_023_S_0331 27 64,F SIEMENS 3T ADNI_013_S_0325 28 70,F SIEMENS 1.5T
ADNI_002_S_1070 25 73,M PHILIPS 3T ADNI_100_S_0892 28 72,F PHILIPS 1.5T
ADNI_002_S_0954 25 69,F GE 1.5T ADNI_123_S_0108 27 78,M PHILIPS 1.5T

AD
ADNI_005_S_0221 20 67,M GE 1.5T ADNI_126_S_0606 23 68,F GE 3T
ADNI_016_S_1263 26 64,F SIEMENS 1.5T ADNI_100_S_1062 24 82,M PHILIPS 1.5T
ADNI_023_S_0139 25 65,F SIEMENS 3T ADNI_002_S_0816 26 70,M GE 1.5T
ADNI_067_S_1185 20 62,M SIEMENS 3T ADNI_009_S_1334 24 64,M GE 1.5T
ADNI_023_S_1289 20 77,F SIEMENS 3T ADNI_027_S_1385 26 69,F SIEMENS 3T
ADNI_082_S_1079 20 78,M SIEMENS 3T ADNI_098_S_0149 20 87,M GE 1.5T

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 3

http://adni.loni.usc.edu
http://www.hippocampal-protocol.net
http://www.hippocampal-protocol.net
http://surfer.nmr.mgh.harvard.edu/


extracted using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/). Since intensity non-uniformity (INU) in MR
images is a major issue when conducting analysis of brain
structural properties, optimised parameters were used in
SPM12 (Ganzetti et al. 2016). Using FSL v5.0.9 (https://fsl.
fmrib.ox.ac.uk/fsl/) and the Brain Extraction Tool (BET)
(Smith 2002), non-brain tissue from the target image were
removed. The intensity inhomogeneity corrected image was
then registered with linear affine transformation and a non-
linear transformation, to the MNI-ICBM152 v.2009c nonlinear
symmetric space, with 1x1x1 mm3 resolution.

The registration was performed by cross correlation as the
similarity index and through usage of the ANTs (Advanced
Normalisation Tools) toolkit which utilises the symmetric nor-
malisation methodology (SyN) (Avants et al. 2008). The left and
right hippocampus ROIs (Region of Interest) in the MNI-
ICBM152 v.2009c space which are labelled according to the
HarP were then back registered to the target space by applying
inverse transformations. Error correction was applied to the
ROIs by subtracting the CSF map of the target image from the
hippocampus ROIs. This mask, which we call PI (Prior
Information), was the input for the segmentation algorithm.

As the border of hippocampus with the nearby structures,
such as amygdala, is not very clear in parts of the image and the

two structures may have a similar MRI intensity, the segmenta-
tion algorithm had trouble being applied there. Therefore,
these areas had to be identified. For this purpose, we con-
structed a binary map which contained the gradient informa-
tion of the target image inside the hippocampus ROIs. First, the
gradient magnitude of the whole image was computed, con-
sidering this map as G(Img). Next, the gradient inside the
hippocampus ROIs were obtained through the usage of:

G PIð Þ ¼ G Imgð Þ \ PI (1)

In order to create the binary map from G(PI), we used
a threshold which divided the voxels from PI into edge and
non-edge voxels. The value for thresholding was adjusted
based on the image, and the binary map was defined as
follows:

Gb PIð Þ ¼ 0 for G PIð Þ < threshold
1 for G PIð Þ > threshold

�
(2)

In Figure 2, the Gb(PI) map for one sagittal slice is demon-
strated. As this figure shows, the border between the hippo-
campus and amygdala has the value of zero. This binary map is
later used for locally integrating the prior information into the
level set formulation.

Figure 1. The summarised flowchart of our proposed method for hippocampus segmentation and a demonstration of the outputs of each step. (a): T1-weighted input
image, (b): input image after correction for intensity non-uniformity, (c): CSF map of the input image, (d): skull stripped image of image (b), (e): MNI-ICBM152 atlas with
segmented hippocampus based on HarP, (f): initial segmented hippocampus using registration with atlas, (h): gradient binary map of image (f), (g): CSF removed from
image (f); (i): the final segmented hippocampus using the proposed level set framework.
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For segmentation, in the final step, we used a novel level set
method which was implemented in Matlab v.8.5 on a laptop
with Intel Corei5, 3.2 GHz CPU, 6 GB RAM, and Windows 10
operating system. The basic idea of the level set was to repre-
sent the curves or surfaces as the zero level set of a dimensional
hyper-surface, providing the advantage of easily handling of
the topological changes. Another advantage was the interface
evolution being completely determined by geometrical partial
differential equations (PDEs), where various forces were inte-
grated together to advance the dynamic interface towards the
optimal sites for image segmentation. Assuming Ω was
a bounded open subset of R2, I : Ω ! R being the target
image, and ϕ x; y; tð Þ the level set function, the curve C was
defined as:

C ¼ x 2 Ω : ϕ xð Þ ¼ 0f g
inside Cð Þ ¼ fx 2 Ω : ϕ xð Þ > 0g
outside Cð Þ ¼ fx 2 Ω : ϕ xð Þ< 0g

8<
: (3)

The general movement formula of level set (with ▽ as the
gradient operator) was as follows:

@ϕ
@t

þ F �ϕj j ¼ 0 (4)

where F is the speed function that relates to evolving surface
characteristics (e.g. normal direction, curvature, etc.) and
image characteristics (e.g. grey level, gradient). Due to the
aim of this study, we chose a level set method which dyna-
mically used the global and local information, and could
therefore deal with challenges in hippocampus segmenta-
tion, such as intensity inhomogeneity and weak and blurred
boundaries. To accomplish this, we integrated the SBGFRLS
(Selective Binary and Gaussian Filtering Regularised Level Set)
(Zhang et al. 2010) and LAC (Localising Region-Based Active
Contours) (Lankton and Tannenbaum 2008) models. In tradi-
tional level set methods, the level set function is initialised to
be a Signed Distance Function (SDF) and should be re-
initialised during the evolution, which has disadvantages
such as moving the zero level set away from its inference
and the expensive computation needed for the re-initialising
step. Alternatively, utilising the SBGFRLS technique, the level
set function is initialised with a binary function and
a Gaussian filter is utilised to regularise it after each iteration.
The strength of the regularisation is controlled by the

standard deviation of the Gaussian filter. In this study, we
used both local and global intensity information in order to
develop a Hybrid Region-based Sign Pressure Force (HSPF)
function, as proposed previously (Zhang et al. 2017). The local
SPF function was defined as:

L I xð Þð Þ ¼ I xð Þ � u1 xð Þþu2 xð Þ
2

max I xð Þ � u1 xð Þþu2 xð Þ
2

��� ���� � x 2 Ω (5)

where u1 xð Þ and u2 xð Þ are the mean values of the intensity
inside and outside the contour localised by a window at the
point x, which are computed according to a previous method
(Lankton and Tannenbaum 2008). The global SPF (Sign Pressure
Force) function is defined as:

G I xð Þð Þ ¼ I xð Þ � c1 xð Þþc2 xð Þ
2

max I xð Þ � c1 xð Þþc2 xð Þ
2

��� ���� � x 2 Ω (6)

where c1 xð Þ and c2 xð Þ represent the intensity averages of
regions inside and outside the contour, computed according
to (Zhang et al. 2010). The hybrid SPF function is defined as
follows (Zhang et al. 2017):

HSPF ¼ w xð ÞG I xð Þð Þ þ 1� w xð Þð ÞL I xð Þð Þ x 2 Ω (7)

In Equation (7), w(x) is a weighted function that decides which
SPF function has a higher dynamic effect on the segmentation.
It is computed as follows (Dong et al. 2013):

w xð Þ ¼ λ:average CNð Þ: 1� CNð Þ x 2 Ω (8)

in which λ is a fixed positive parameter, and average (CN)
represents overall contrast information of the image.
Additionally, CN is the local contrast ratio of the image, defined
as:

CN ¼ Mmax �Mmin

Mg
(9)

N denotes the size of local window, with Mmax and Mmin

being the maximum and minimum of the image intensity
in this local window. Mg is defined as the intensity level of
the image. The value of w(x) decreases when the contour
is close to the desired boundary, making the local term
dominant. The value of w(x) increases when the contour is
far from the desired boundary, making the global term

Figure 2. The estimated ROI for the hippocampus in a sagittal view of an MRI image (left); the Gb(IP) map (binary map of the gradient magnitude within the
hippocampus ROI) for the corresponding image (right): red voxels represent the value of 0 in the map, and white voxels represent the value of 1.
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dominant. We used Gb(PI) as the share of prior term, PI(x),
in our final evolution equation. The final evolution of level
set function ϕ is defined as:

@ϕ
@t

¼ Gb PIð Þ HSPF I xð Þð Þ div
�ϕ
�ϕj j þ α

� �
�ϕj j þ �HSPF I xð Þð Þ�ϕ

� 	

þ 1� Gb PIð Þð Þ PI xð Þδ ϕð Þ½ �; x 2 Ω

(10)

where δ is the Dirac function and div �ϕ
�ϕj j divergence �ϕ

�ϕj j
� �

represents the curvature of the level set function and
αcontrols the shrinking or expanding speed when the con-
tour is outside or inside the desired boundary. As indicated
in Figure 1, the input of the segmentation step is a CSF
corrected hippocampus ROI in the target image which is
obtained from the previous steps. The output is the final
ROI hippocampus. Through this, the proposed level set
method achieves superior segmentation performance in
terms of accuracy and robustness (Zhang et al. 2017).
Through usage of its special feature of dynamically using
local and global information, if the initial hippocampus
contour is already near the desired boundary, the local
force will be active and the contour in these points will
be adjusted based on the target image information. If the
initial hippocampus contour is far from the desired bound-
ary at some points in contour, the level set formulisation
will allow the global force to be activated. According to
Equation (8), in voxels where the gradient is very low, the
binary map is equal to zero, and therefore the prior infor-
mation plays an effective role. The parameters for our level
set implementation are as follows: threshold for binary map:
90, window size of the Gaussian filtering kernel: 3, standard
deviation of the Gaussian filtering: 2, time step for evolution
of level set function ϕ: 0.5, number of iteration for evolution
of level set function ϕ: 60, local window size for local SPF
function: 5, local window size of the local contrast ratio: 5, λ
in the weighted function w(x): 0.5, and α in the final evolu-
tion of level set function: 3. For qualitative comparison for
the segmentation results of our proposed method and
Freesurfer, a 3D view of a left hippocampus of one typical
subject is illustrated in Figure 3.

3. Results

3.1. Volumetric analysis

Table 2 provides the results of hippocampus volumetric ana-
lysis of the 36 MRI data obtained from the ADNI-HarP dataset.

Three volumetric methods were applied to each image:
Freesurfer v.6, our proposed method, and the ground truth
approach, which was a manual segmentation based on HarP.
Freesurfer returned the average hippocampal volumes in the
right and left hemispheres as 3257.42 ± 615 and 3266.61 ±
654.7 mm3, respectively. Our proposed method showed these
values to be 2659.69 ± 622.5 and 2535.33 ± 599.1 mm3,
whereas the ground truth approach measurements were
2659.83 ± 574.3 and 2585.33 ± 546.4 mm3.

3.2. Accuracy tests

A number of different approaches were utilised to compare the
results of the three methods. First, Intra-class correlation coeffi-
cient (ICC two-way mixed) was used (Shrout and Fleiss 1979),
using IBM Statistics SPSS v.22. As shown in Figure 4, the results
of Freesurfer, as well as our proposed approach, were con-
trasted to the results of manual segmentation. For comparison,
we also computed ICC between Freesurfer and our proposed
method.

For the right hemisphere measurements, the ICCs for the
results of Freesurfer and our method versus manual segmenta-
tion were 0.96 and 0.973, respectively, and the values for the left
hemisphere were 0.925 and 0.970. The ICCs for the results of
Freesurfer versus our method were 0.955 and 0.891 for right and
left hemisphere, respectively. According to the plots, an over-
estimated bias for Freesurfer can be observed related to both
ground truth and our method. The results show that, although
our method and Freesurfer had consistency, there was higher
consistency between our method and manual segmentation.

Second, we used a Bland–Altman plot (Bland and Altman
1999), a graphical method to assess the level of agreement
between measurements. These plots are illustrated in Figure 5.
The red line shows the average of the differences between the
measurements of the two methods. The green lines are calcu-
lated as the average mean differences plus 1.96 times the stan-
dard deviation of the differences. Based on these plots, there is
a tendency for overestimation in Freesurfer and the results of our
method showed more similarity to the ground truth as the red
line in the Bland–Altman plot is almost zero with narrower limit
space between red and green lines in our method.

Third, we computed overlap measurements. Two of the most
frequently used coefficients in this regard are Dice Similarity
Coefficient (DSC) (Dice 1945), and the Jaccard Index (JI) (Jaccard
1912). Both Dice and JI have output values between 0 and 1, with
a value of 1 signifying perfect overlapping, and a value of 0
showing no common pixels between the two images.

Figure 3. The ROIs extracted for the left hippocampus in a sample data, in the three approaches: FreeSurfer (left), our approach (middle), and the gold
standard (right). Green colour represents true positive voxels, the blue colour represents false positives, and the red colour shows false negative voxels, as
compared with the ground truth.
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Table 3 provides the results of these two tests. As it is illu-
strated, all the Dice and JI values for both the right and left
hippocampus volumes were higher when contrasting our
method versus the ground truth, compared to Freesurfer, which
is another indication of the higher accuracy of our method.

3.3. Classification

For inspecting the effects of demographic information between
NC vs MCI group and NC vs AD group, we applied independent
samples t-test for age (continuous variable) and chi-square test
for sex and scanner strength (categorical variables) using IBM
Statistics SPSS v.22. The summary of dataset information is
provided in Table 4. According to the results, the computed
p-values were greater than 0.05; therefore, it presents no sig-
nificant differences for those factors in NC vs MCI group, as well
as NC vs AD group.

For classification purposes, a linear discriminator was
applied in SPSS. We used volumes obtained from Freesurfer,

our method and manual segmentation (HarP). In order to
decrease the variability of the hippocampus volume measure-
ments, all volumes were normalised with intracranial volume
(ICV) computed by Freesurfer, and then the left and right
hippocampus volumes were averaged. Sensitivity, specificity
and accuracy were computed in two cases of classification:
NC vs AD and NC vs MCI. The results are listed in Table 5.

4. Discussion

For manual hippocampus segmentation, the expert is knowl-
edgeable about the location and shape of this structure in the
brain. Utilising this pre-existing knowledge in combination with
the information from the target image which is generally the
intensity values, he/she would be able to define the borders of
the hippocampus in each slice. However, in certain situations
such as between hippocampus and the amygdala, identifying
the borders of hippocampus is very complicated. In these
situations, the expert has to rely on his/her prior knowledge

Table 2. The results of hippocampus volumetry in the whole dataset, using the three approaches: Freesurfer, our proposed method, and the ground truth. The average
(and standard deviation) of the volumes in each group (NC, MCI, AD), as well as for all datasets are also provided. The volumes are in cubic millimetres.

Subject ID

FreeSurfer Proposed method Ground truth

Right Hippocampus Left Hippocampus Right Hippocampus Left Hippocampus Right Hippocampus Left Hippocampus

Normal Control
ADNI_127_S_0260 3201 2996 2694 2638 2865 2715
ADNI_011_S_0016 3652 3687 2936 2885 2990 2798
ADNI_020_S_1288 4737 4466 3743 3429 3791 3509
ADNI_032_S_0479 3537 4300 3035 3421 3203 3403
ADNI_009_S_0842 4181 3690 3469 3337 3330 3243
ADNI_011_S_0021 3778 3829 3194 3145 3195 3144
ADNI_073_S_0089 3821 4013 3031 3104 3207 3352
ADNI_100_S_1286 4471 4298 3669 3478 3588 3557
ADNI_018_S_0425 2890 3047 2339 2344 2692 2714
ADNI_023_S_0031 3435 3796 2801 3039 2795 2951
ADNI_023_S_0061 3690 3230 3127 2713 3198 2790
ADNI_037_S_0303 3121 3141 2540 2561 2534 2629
AVERAGE ± STD 3709.5 ± 544 3707.75 ± 512 3048.20 ± 430 3007.83 ± 380 3115.66 ± 363 3067.08 ± 340

MCI
ADNI_002_S_0729 3523 2891 2510 2117 2341 1906
ADNI_011_S_0856 3539 3617 3200 2607 3003 2905
ADNI_016_S_1138 3402 3023 2919 2602 2713 2433
ADNI_023_S_0331 3295 3293 2759 2433 2233 2160
ADNI_002_S_1070 4150 4001 4325 4157 3878 3636
ADNI_002_S_0954 2824 2463 2053 1901 2073 1876
ADNI_003_S_1057 3348 3543 2657 2796 2687 2799
ADNI_011_S_0241 2532 3113 1991 2558 2057 2677
ADNI_012_S_1292 3451 4452 2354 2130 2715 2578
ADNI_013_S_0325 2444 2240 2151 1875 2182 1946
ADNI_100_S_0892 2818 2711 1841 2157 2032 2214
ADNI_123_S_0108 3710 3600 3275 3053 3196 2965
AVERAGE ± STD 3253 ± 503 3245.60 ± 638 2669.60 ± 699 2532.16 ± 625 2592.5 ± 560 2507.91 ± 526

AD
ADNI_005_S_0221 2504 2473 2147 1809 2375 2017
ADNI_016_S_1263 2642 2342 2054 1977 2133 1994
ADNI_023_S_0139 2614 2810 2322 2387 2275 2284
ADNI_067_S_1185 3137 2550 2251 1955 2521 2248
ADNI_023_S_1289 2275 2428 1554 1755 1468 1766
ADNI_082_S_1079 2521 2499 2442 1679 2232 1966
ADNI_126_S_0606 2358 2942 1751 2261 1824 2139
ADNI_100_S_1062 3248 3090 3083 2045 2916 2426
ADNI_002_S_0816 3598 3218 2860 2430 2805 2482
ADNI_009_S_1334 3309 3912 2575 2375 2761 2584
ADNI_027_S_1385 2296 2227 1626 1492 1642 1542
ADNI_098_S_0149 3215 3667 2471 2627 2304 2724
AVERAGE ± STD 2809.75 ± 460 2846.5 ± 537 2261.33 ± 470 2066 ± 349 2271.33 ± 454 2181 ± 345
OVERAL AVERAGE ± STD 3257.42 ± 615 3266.61 ± 654.7 2659.69 ± 622.5 2535.33 ± 599.1 2659.83 ± 574.3 2585.33 ± 546.4
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about the shape and location of the hippocampus. In our
proposed method, we tried to implement the described man-
ual segmentation procedure. We obtained the prior knowledge
from a simple registration step, improving its performance by
CSF removal. The obtained ROI was used for automatically
initialising the level set algorithm. Our segmentation used

a hybrid SPF function, which adaptively utilised the local and
global region information. Local information helped to over-
come the intensity inhomogeneity of MR images. Global infor-
mation helped to avoid the contour stopping at the local
minima. For situations where the image alone does not provide
sufficient information for the segmentation, for instance

Figure 4. The results of the Intra-Class Correlation (ICC) between the results of our method versus the ground truth, Freesurfer versus the ground truth, as well as
Freesurfer versus our method. The first row illustrates the ICCs between the FreeSurfer and ground truth, for the right and left hippocampus, the second row represents
the same values for our proposed approach and the third row represents ICCs between our method and Freesurfer. The green line is the unity line, and the
hippocampus volumes are reported in cubic centimetres.

Figure 5. The results of the Bland–Altman plots for the results of our proposed method versus ground truth (left), and for the Freesurfer results versus ground truth
(right). The red lines represent mean values of the differences, and the green lines represent 1.96 times the standard deviation of the differences.
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between hippocampus and amygdala, our method mostly
relies on prior information. In addition, our method is more
robust when subject to re-initialisation or regularisation com-
pared to conventional level set methods due to the use of
a Gaussian convolution kernel for regularisation. In brief, this
study proposed a new approach for hippocampus segmenta-
tion without requiring multiple registration, training data, or
learning steps, which is therefore more simple to replicate. In
addition, the accuracy of our method was acceptable.

There are a few studies which have used local weighting in
a level set method for hippocampus segmentation (Zarpalas
et al. 2014; Achuthan and Rajeswari 2015). In a previous study
(Zarpalas et al. 2014), a hybrid ACM with OLMs & multi-atlas
with joint label fusion was proposed which utilised the learning
procedure and multi-atlas steps, which were relatively compli-
cated to apply, and were time-consuming. Furthermore, the
mean dice was reported at around 0.86. In another study

Table 3. The results of Dice similarity and Jaccard index values, for the Freesurfer and our method, versus the ground truth. Average values and standard deviations of
these measurements for each group (NC, MCI, AD) as well as for all datasets for the left and right Hippocampus are listed.

Subject ID

FreeSurfer Proposed Method

Right Hippocampus Left Hippocampus Right Hippocampus Left Hippocampus

Dice JI Dice JI Dice JI Dice JI

Normal Control
ADNI_127_S_0260 0.786 0.648 0.793 0.658 0.895 0.811 0.885 0.795
ADNI_011_S_0016 0.774 0.632 0.762 0.616 0.862 0.757 0.861 0.756
ADNI_020_S_1288 0.778 0.637 0.760 0.613 0.885 0.793 0.868 0.767
ADNI_032_S_0479 0.789 0.652 0.771 0.628 0.875 0.777 0.881 0.787
ADNI_009_S_0842 0.740 0.587 0.766 0.621 0.862 0.758 0.872 0.774
ADNI_011_S_0021 0.795 0.660 0.803 0.671 0.885 0.750 0.906 0.828
ADNI_073_S_0089 0.767 0.622 0.785 0.646 0.863 0.760 0.857 0.750
ADNI_100_S_1286 0.790 0.652 0.773 0.630 0.883 0.791 0.875 0.778
ADNI_018_S_0425 0.812 0.684 0.796 0.661 0.874 0.776 0.852 0.743
ADNI_023_S_0031 0.772 0.629 0.746 0.595 0.841 0.726 0.861 0.757
ADNI_023_S_0061 0.792 0.656 0.739 0.585 0.873 0.774 0.855 0.747
ADNI_037_S_0303 0.770 0.627 0.760 0.613 0.867 0.765 0.877 0.780
AVERAGE ± STD 0.780 ± 0.02 0.640 ± 0.02 0.771 ± 0.02 0.628 ± 0.03 0.872 ± 0.01 0.770 ± 0.02 0.871 ± 0.01 0.772 ± 0.02

MCI
ADNI_002_S_0729 0.722 0.566 0.659 0.492 0.841 0.726 0.819 0.685
ADNI_011_S_0856 0.771 0.629 0.737 0.584 0.863 0.760 0.839 0.723
ADNI_016_S_1138 0.746 0.595 0.758 0.611 0.895 0.810 0.892 0.806
ADNI_023_S_0331 0.714 0.555 0.681 0.517 0.839 0.723 0.823 0.700
ADNI_002_S_1070 0.799 0.666 0.788 0.650 0.875 0.777 0.854 0.745
ADNI_002_S_0954 0.726 0.570 0.725 0.569 0.842 0.727 0.815 0.688
ADNI_003_S_1057 0.762 0.615 0.745 0.593 0.831 0.711 0.849 0.737
ADNI_011_S_0241 0.678 0.512 0.755 0.606 0.811 0.682 0.815 0.688
ADNI_012_S_1292 0.697 0.535 0.636 0.467 0.858 0.751 0.806 0.675
ADNI_013_S_0325 0.759 0.612 0.732 0.577 0.863 0.759 0.822 0.698
ADNI_100_S_0892 0.644 0.475 0.719 0.561 0.816 0.690 0.839 0.723
ADNI_123_S_0108 0.770 0.626 0.759 0.611 0.867 0.765 0.828 0.707
AVERAGE ± STD 0.732 ± 0.04 0.580 ± 0.05 0.724 ± 0.04 0.570 ± 0.05 0.850 ± 0.02 0.740 ± 0.04 0.833 ± 0.02 0.714 ± 0.04

AD
ADNI_005_S_0221 0.764 0.619 0.647 0.479 0.821 0.697 0.796 0.662
ADNI_016_S_1263 0.707 0.547 0.740 0.588 0.826 0.704 0.811 0.682
ADNI_023_S_0139 0.761 0.615 0.745 0.594 0.851 0.740 0.851 0.741
ADNI_067_S_1185 0.721 0.564 0.712 0.553 0.829 0.708 0.803 0.671
ADNI_023_S_1289 0.682 0.517 0.703 0.542 0.833 0.714 0.838 0.722
ADNI_082_S_1079 0.725 0.569 0.675 0.510 0.804 0.672 0.801 0.668
ADNI_126_S_0606 0.712 0.553 0.702 0.541 0.823 0.699 0.834 0.715
ADNI_100_S_1062 0.782 0.641 0.726 0.570 0.841 0.726 0.802 0.669
ADNI_002_S_0816 0.754 0.605 0.748 0.598 0.865 0.762 0.822 0.698
ADNI_009_S_1334 0.725 0.568 0.645 0.476 0.829 0.707 0.829 0.707
ADNI_027_S_1385 0.703 0.542 0.720 0.653 0.840 0.724 0.855 0.747
ADNI_098_S_0149 0.718 0.560 0.734 0.580 0.839 0.723 0.852 0.742
AVERAGE ± STD 0.730 ± 0.03 0.575 ± 0.04 0.708 ± 0.03 0.560 ± 0.05 0.833 ± 0.01 0.715 ± 0.02 0.824 ± 0.02 0.702 ± 0.03
OVERAL AVERAGE± STD 0.747 ± 0.04 0.598 ± 0.05 0.735 ± 0.04 0.585 ± 0.05 0.852 ± 0.02 0.741 ± 0.03 0.843 ± 0.03 0.730 ± 0.04

Table 4. Demographic details and scanner strength of the selected MRI dataset
for classification.

Groups NC MCI AD

Number of subjects 12 12 12
Age in years (average ± SD) 73.6 ± 7.6 69.7 ± 6.6 71.1 ± 8
Gender Male (%) 6(50%) 6(50%) 7(58%)
MRI strength 3T (%) 8(66%) 5(41%) 6(50%)

Table 5. Classification results in two conditions: normal control vs AD and normal
control vs MCI, using the normalised hippocampus volume computed by HarP,
our method, and Freesurfer.

Groups Method Sensitivity Specificity Accuracy

NC vs AD Freesurfer 83% 83% 83%
HarP 91% 91% 91%
Proposed method 91% 91% 91%

NC vs MCI Freesurfer 58% 83% 70%
HarP 75% 83% 79%
Proposed method 66% 83% 75%
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(Achuthan and Rajeswari 2015), a locally weighted Prior based
Level Set (LocPLS) was used and the level set was a GAC model.
The mean dice was reported at 0.81. In the current study, we
have used locally weighted prior knowledge in a novel level-set
method, based on hybrid SPF function, which produced an
average dice index of around 0.85. Our method in comparison
to a previous one (Zarpalas et al. 2014) is much simpler to
implement and requires less time, while producing comparable
outcomes despite one registration step and no learning proce-
dure. The CSF correction step was performed in order to
enhance the accuracy of our method.

It is worth noting that we compared our results with
Freesurfer because this package is a benchmark and widely
used software, developed to segment cortical and subcortical
brain structures using multiple segmentation frameworks. To
compare our results with those obtained from Freesurfer, we
used a number of statistical approaches, with the manual hip-
pocampus segmentation being the gold standard. The average
of Dice and Jaccard indices in both left and right hippocampus
for our method compared to the gold standard were 0.8475
and 0.7355, respectively, whereas these measurements for
Freesurfer were 0.741 and 0.5915. Our ICC results were also
superior over Freesurfer. Additionally, the Bland–Altman plot
demonstrated that our method did not show obvious over-
estimation or underestimation in the hippocampus segmenta-
tion. Our approach achieved classification accuracies of 91% for
NC vs AD and 75% for NC vs MCI which is close to the HarP
classification results.

Despite the obvious strengths, this study suffered from two
major limitations. First, there are some parameters in the level
set method which need to be adjusted according to the target
image properties. Therefore, to apply this method to a dataset
which is obtained with various sequences, it might be neces-
sary to choose different values for the parameters. We used the
same parameters for all our images as mentioned at the end of
section 2.4 even though the MR images were captured
differently. Second, as the aim of this study was only to intro-
duce our method, a small dataset was selected; it is necessary
to replicate this method on a larger dataset of MR images with
diverse characteristics to assess the feasibility of this method
for clinical applications.
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